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Abstract

The Fourier transform (FT) has been the most popular method for analyzing large rotating machine shaft vibration

problems, but it assumes that these vibration signals are linear and stationary. However, in reality this is not always true.

Nonlinear and non-stationary shaft vibration signals are often encountered during the start-up and shut-down processes of

the machines. Additionally, mechanical faults, for example rotor-to-stator rubbing, fluid excitation, part-loosening, and

shaft cracking, are nonlinear. Owing to these reasons, an accurate analysis of shaft vibration cannot always be achieved by

using the FT.

An alternative tool, the wavelet transform (WT), is now being used to improve the situation. But the efficiency is a

problem especially when applying the WT to the accurate analysis of a large-scale, lengthy data.

In view of the powerful capability of empirical mode decomposition (EMD) to process nonlinear/non-stationary signals,

its algorithm efficiency and its satisfactory performance in minimizing energy leakage, the EMD is used in this paper to

analyze the problem, the signals investigated are adaptively decomposed into a finite number of intrinsic mode functions

(IMFs). The principal IMFs, identified using an energy-distribution threshold, dominate the signals’ oscillation. So,

‘purified’ shaft vibration signals can be reconstructed from these principal IMFs. To remove interference present in

principal IMFs, an adaptive band-pass filter is designed, whose central frequency is automatically set to the frequency

dominating the IMF being investigated. To facilitate the observation of transient shaft vibration, a transient shaft orbit

(TSO) is constructed by introducing timescale into the orbit drawing process. Nine mathematical criteria are also proposed

to evaluate the shaft vibrations exhibited in the IMFs and TSOs. The novelty of this approach is that the EMD provides an

adaptive, effective, and efficient way to obtain ‘purified’ shaft vibration signals, which describe the transient shaft vibration

more vividly and precisely, reducing misinterpretation of the machine running condition.

The approach is validated by two practical examples:
�
 Part-loosening incident on a large centrifugal compressor.
�
 Fluid excitation incident on a centrifugal compressor.

Calculations of the mathematical criteria for seven different running conditions of these large rotating machines are also

presented.
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It is demonstrated that the proposed technique provides a feasible and reliable way to interpret shaft vibration, by which

means the machine condition can be diagnosed correctly.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Shaft vibration signals, especially shaft orbit measured by two perpendicularly mounted displacement
probes, carry abundant and vital dynamic information for condition monitoring large rotating machinery
[1–3], through which potentially harmful malfunctions may be isolated and identified [4,5]. A review of the
literature published in the last two decades reveals that two main approaches, the Fourier and wavelet
transforms (FT and WT), are popular for processing large rotating machine shaft vibration signals.

Advanced FT-based techniques were developed for shaft vibration signals following the establishment of
the mathematical basis of the Holospectrum [6] and reinforced recently by Shi et al. [1], who improved the
algorithm for calculating signal amplitude, frequency, and phase information using the high-resolution
spectrum (HRS).

In the last two decades, FT-based techniques have been widely adopted, for example, Chen et al. [7] adopted
this approach to extract integrated vibration information from rotating machines; Yang et al. used this
approach to diagnose a shaft with a transverse crack [8] and investigated the factors which influence the
transient vibration of the shaft [9]. However, due to the averaging effect, the FT-based techniques are still not
very suitable to deal with nonlinear/non-stationary signals despite efforts to improve them [1,10].

In view of this, the WT has been used as an alternative for depicting the transient vibration of the machine.
For example, Li [2] adopted the harmonic wavelet packets decomposition method to obtain the shaft orbit
created by the sub-frequency signal and Zhang et al. [3] tried diagnosing a hydropower generator with the aid
of the WTs. A similar approach was also employed by Chen [4] and Peng et al. [5] to diagnose rotating
machines. But this does not mean that the WT-based techniques are perfect in all applications. In fact,
sometimes they suffer from intensive calculations especially when they are applied to processing large-scale,
lengthy data. Energy leakage occurring in the vicinity of frequencies of interest cannot be avoided by them due
to the limited length of wavelet function and the frequency band overlap between the quadrature mirror filters
[11,12]. As a consequence, the smeared time–frequency spectrum inevitably gives rise to signal interpretation
difficulties [13,14].

The empirical mode decomposition (EMD), attributed to provide a more realistic signal representation,
without artifacts imposed by the non-adaptive limitations of the FT and the WT, has recently been regarded as
a powerful tool for analyzing nonlinear/non-stationary signals. The EMD possesses high efficiency in
computation [15,16], because it allows a direct algorithmic analysis of the signal time waveform, enabling it to
deal with large-scale, lengthy data. Moreover, the EMD is an adaptive, non-constrained decomposition of the
signal into a finite number of intrinsic mode functions (IMFs). Each IMF represents one simple oscillatory
signal mode. In comparison with the WT the EMD does not show serious energy leakage problem in the
vicinity of frequencies of interest [17]. These advantages allow the EMD to be a more powerful and promising
tool for solving condition monitoring problems associated with nonlinear/non-stationary signal analysis
[18–22]. However, like other signal processing methods the EMD also suffers from problems, for example the
end effect considered in Refs. [23–25] and the disturbances due to pseudo-information at low frequencies
[26,27]. But, as reported in the literature, these defects can be overcome by taking measures in the calculation
of the EMD.

In this paper, the EMD is employed to analyze the transient vibration of the shafts of large rotating
machines. The novelties of this application may be summarized in the following three points:
�
 The local-adaptive and energy-conservation decomposition is introduced to analyze the transient shaft
vibration. This is very helpful to detect those incipient faults and insignificant changes of machine running
condition.
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�
 The EMD has an efficient computing algorithm and does not suffer from the inherent shortcomings in the
FT and WT, allowing the EMD to obtain the ‘purified’ shaft vibration signal ‘truly’ and ‘quickly’.

�
 The EMD is able to process massive data efficiently, it enables to monitor and diagnose shaft vibration for

a longer period of time. This is definitely helpful for further guaranteeing the correctness of the diagnosis
and assessment of machine running condition.

To further strengthen the power of EMD-based condition monitoring and fault diagnosis for rotating
machines, a new concept namely the transient shaft orbit (TSO) is constructed using those principal IMFs and
nine mathematical criteria will be proposed for quantitatively assessing shaft vibration. More details about
these techniques will be given in later sections.

It should be noted that all the vibration data presented in this paper were collected from real centrifugal
compressors with similar rotor-bearing systems operating in Shijiazhuang Petroleum Plant, Xingjiang
Petroleum-Chemical Plant, and ZhenHai Oil Refinery in China and the data were collected and managed by
the Research Institute of Diagnostics and Cybernetics in Xian Jiaotong University.

The remaining parts of the paper are organized as follows. The definition of the proposed technique and the
resultant TSO are introduced in Section 2. The mathematical criteria for quantitatively assessing the running
condition of rotating machines are depicted in Section 3. The illustrative examples and the statistic results of
the mathematical criteria for validating the proposed approach are presented in Section 4. Finally, the
concluding remarks are given in Section 5.
2. Purifying shaft vibration signals using EMD

2.1. Definition

To facilitate understanding of the proposed technique, a couple of practical vibration signals collected using
two perpendicularly mounted displacement transducers are used to illustrate step by step the procedures of the
proposed method. These signals were from a rotating machine with a faulty coupling alignment. The time
waveforms of the signals, their FFT spectra, and the shaft orbit constructed from them are shown in Fig. 1.
The purified shaft orbit, derived using the HRS [1] are also given for comparison. It should be noted that X(t)
represents the signal collected in the x-direction and Y(t) the y-direction.

According to the definition of the EMD [15,16], the signal to be investigated is decomposed into a finite
number of IMFs, each of which represents a simple oscillatory mode and satisfies the following two
conditions:
�
 In the whole data set of the IMF, the number of extrema and the number of zero crossings must either be
equal or differ at most by one.

�
 At any point of the IMF, the mean value of the envelopes defined by the local maxima and minima is zero.

The first condition ensures the narrow band feature of the orthogonal filters implicit in the process of the
EMD. The second condition ensures that the instantaneous frequency will not have any unwanted fluctuations
induced by asymmetric waveforms. In the implementation of the EMD, a sifting process is conducted.

Step 1: Identify all local maxima in the signal x(t) and then connect them by using a cubic spline line, which
is regarded as the upper envelope and expressed by eu(t). Likewise, identify all local minima in x(t) and connect
them by using another cubic spline line, which is regarded as the lower envelope and expressed by el(t).

Step 2: The local mean m1(t) is calculated by using the equation

m1ðtÞ ¼
euðtÞ þ elðtÞ

2
(1)

Step 3: Calculate the equation

h1ðtÞ ¼ xðtÞ �m1ðtÞ (2)
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Fig. 1. The displacement signals when coupling misalignment fault happens in large rotating machinery: (a) time-waveforms of the signals,

(b) FFT spectra of the signals, (c) original shaft orbit, and (d) purified shaft orbit derived by using the HRS.
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and examine whether the resultant h1(t) is an IMF satisfying the aforementioned two conditions. If h1(t) is not
an IMF, regard h1(t) as original signal and repeat above calculations until h1(t) is an IMF. Otherwise,

Step 4: Remove the first IMF from x(t) and then get the residual component r1(t), i.e.

r1ðtÞ ¼ xðtÞ � h1ðtÞ (3)

Step 5: Treat r1(t) as original data and repeat above calculations until the second IMF h2(t) is obtained.
Then

r2ðtÞ ¼ r1ðtÞ � h2ðtÞ (4)

Step 6: Iterate the previous calculations n times and get n IMFs of the signal until the final residual
component:

rnðtÞ ¼ rn�1ðtÞ � hnðtÞ (5)

is a monotonic function or a constant from which no more IMF can be extracted.
Finally, the original signal x(t) may be expressed as

xðtÞ ¼
Xn

i¼1

hiðtÞ þ rnðtÞ (6)

By using this technique, the displacement signals X(t) and Y(t) shown in Fig. 1 are decomposed and the
results shown in Fig. 2 are obtained. The FFT spectra of the obtained IMFs are also plotted in Fig. 2 to
facilitate the interpretation of the EMD decomposition results.

Due to the narrow band feature of the ‘orthogonal filters’ implicit in the EMD process, each IMF should
ideally contain only a single frequency component. However, in reality there is no perfect orthogonal filter,
some interference terms are often present in the side bands of the principal IMF frequency. But these side band
energies are small and the IMF is dominated by the principal frequency. Therefore, the distribution of signal
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energy may be evaluated approximately through the ratio:

ri ¼
ffiffiffiffiffi
Ai

p ,Xk

i¼1

ffiffiffiffiffi
Ai

p
ði ¼ 1; 2; . . . ; kÞ (7)
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Fig. 2. The EMD of the displacement signals: (a) the EMD of signal X(t) and (b) the EMD of signal Y(t).
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Fig. 2. (Continued)
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where k indicates the number of the IMFs and Ai is the magnitude of the dominant frequency component in
the i-th IMF. Likewise, the comprehensive energy distribution after considering the vibrations in both
mutually orthogonal directions may be calculated by

ri_xy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2i_x þ r2i_y

q ,Xk

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2i_x þ r2i_y

q
ði ¼ 1; 2; . . . ; kÞ (8)
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where ri_x and ri_y represent the energy distribution ratios of the signals collected in x- and y-directions,
respectively.

By using Eqs. (7) and (8), the energy distributions of the signals X(t) and Y(t) are calculated and the results
are shown in Fig. 3.

Subsequently, sort ri_xy ði ¼ 1; 2; . . . ; kÞ in descending order and identify the principal IMFs through the
condition

PN
i¼1ri_xyXyr, where yr is a threshold with default value 0.8. In practical calculations, yr may have

any value in the interval (0, 1). The larger yr, the greater the number of IMFs that need to be taken into
account for constructing the ‘purified’ signal. In this paper, the default value of 0.8 is adopted. Based on this
rule, the first and the second IMFs in Fig. 3 are identified as the principal IMFs of the signals. Long-term large
rotating machine fault diagnosis shows that twice shaft-rotational frequency is a typical symptom of coupling
misalignment. By observing Fig. 2, it is found that the dominant frequency of the second IMF is the shaft-
rotational frequency 190Hz, the dominant frequency of the first IMF is the twice shaft-rotational frequency
380Hz. So, there is no doubt that the EMD has successfully extracted the major features of the shaft
vibration.

In order to further remove interference terms from the principal IMFs, an adaptive band-pass filter f(t) is
designed, inspired by the thought of Morlet wavelet function [13], f(t) may be mathematically expressed as

f ðtÞ ¼ e�ð2t=xÞ2=2 sinðotþ jÞ t ¼ 0�
L� 1

f s

;j ¼ 0

� �
(9)

whose central frequency o is adaptively the dominant frequency of the IMF being considered. In the equation,
x is a shape-control parameter of a Gaussian window, fs is the sampling frequency of the original vibration
signal, and L is the number of data used to simulate the filter. Together with parameter x, it determines the
time–frequency resolution and the bandwidth of the filter.

An illustrative example is given in Fig. 4, showing the influences of x and L on the filter bandwidth. From
Fig. 4, it is found that the larger the values of x and L, the narrower the bandwidth of the filter.

In this paper, an adaptive L is used in order to achieve high frequency resolution at low frequencies and high
time resolution at high frequencies. It is calculated by using the equation

L ¼
f s

2f imf

L0 (10a)
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where fimf indicates the dominant IMF frequency being considered, L0 is the number of data used for
simulating the filter when the dominant frequency of the IMF is as high as half the sampling frequency of the
signal. In this paper, L0 ¼ 100. The value of the shape-control parameter x is dependant upon the value of L,
i.e.

x ¼
L

f s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log 100

p (10b)

Then, the principal IMFs are filtered using the equation:

x̃imf_iðtÞ ¼

Z þ1
�1

ximf_iðtÞf ðt� tÞdt (11)

where ximf_iðtÞ represents the i-th principal IMF and x̃imf_iðtÞ is its purified result.
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In order to conserve energy x̃imf_iðtÞ is further normalized by the equation

˜̃ximf_iðtÞ ¼ x̃imf_iðtÞ

ffiffiffiffiffi
Ai

Ãi

s
(12)

where Ai is the magnitude of the dominant frequency component in the i-th principal IMF. Ãi is the magnitude
of the dominant frequency component in x̃imf_iðtÞ.

Finally, the ‘purified’ signal is constructed using the equation

X pðtÞ ¼
XN

i¼1

˜̃ximf_iðtÞ (13)

where N indicates the number of principal IMFs and Xp(t) represents the ‘purified’ signal constructed using
them.

After processing both X(t) and Y(t) using the method described above, their ‘purified’ forms Xp(t) and Yp(t)
as well as the ‘purified’ shaft orbit constructed from them are shown in Fig. 5a, where the typical ‘banana’ or
‘8’ shaped shaft orbit of a coupling misalignment fault is clearly observed, while this symptom cannot be
observed directly from the original shaft orbit in Fig. 1c. Unlike the HRS, the EMD does not require any
complex calculations for obtaining the accurate amplitude, frequency, and phase information from the signals.

In order to show the superiority of the EMD-based approach, the original shaft orbit, shown in Fig. 1c, is
also purified using the method of wavelet packet decomposition adopted in Refs. [2–4]. The purified results are
also shown in Fig. 5 for the convenience of comparison. In the wavelet packet decompositions, an orthogonal
wavelet function namely ‘haar’ wavelet was used. In Fig. 5b and c, ‘Wm,n’ (nX0) indicate the coefficients
located in the no. n+1 frequency region obtained during the m-level of wavelet packet decomposition. Herein,
m ¼ 3 implies that the three-level of wavelet packet decomposition was conducted to interpret the shaft
vibratory signals X(t) and Y(t). The purified signals (xwp and ywp) are constructed using the coefficients W3,1,
W3,2 and W3,3, in which the frequencies characterizing the coupling misalignment fault are contained.

From Fig. 5b and c it is found that many interference terms exist in each Wm,n,, as a consequence, the
purified shaft orbit shown in Fig. 5d is noisy and the characteristic ‘banana’ or ‘8’ shape cannot be identified.

In the meantime, the computing efficiency of the EMD-based approach is verified by comparison with the
three-level of wavelet packet decomposition algorithm. In the investigation, the computer program for each
approach was run 10 times. The recorded computing times and their mean values are listed in Table 1. This
investigation was carried out on a common computer with a 3.40GHz Pentium(R) D CPU and a 1GB RAM.

From Table 1, it is obvious that the EMD-based approach is more time-efficient than the three-level of
wavelet packet decomposition-based approach as the former takes an average of 1.5141 s to get the ‘purified’
orbit shown in Fig. 5a, while the latter takes average 2.0828 s to get the purified orbit shown in Fig. 5d. When a
higher-level of wavelet packet decomposition is employed, the computing time-efficiency will be lower.

2.2. Transient shaft orbit (TSO)

Practice shows that the two-dimensional shaft orbit cannot always provide adequate shaft vibration
information, thus an incorrect diagnosis may be inevitable. The EMD approach provides an effective way to
improve this situation, attributable to the IMFs giving a real description of the signal with time. To facilitate
understanding of this statement, Fig. 6 shows a two-dimensional shaft orbit obtained during start-up of a
centrifugal compressor.

By observing the orbit shown in Fig. 6 it is hard to explain why the shaft orbit appears to show two orbit
tracks. It has even been wrongly concluded that chaos or an oil whirl fault is occurring because the orbit has
features similar to them. However, this can easily be clarified using the EMD method. In this way a new
concept is proposed, the TSO, taking the advantages of the IMFs, which provide a real time description of the
signal. In essence, the TSO is a three-dimensional shaft orbit constructed by introducing time into the
conventional two-dimensional shaft orbit. The TSO corresponding to the orbit in Fig. 6 is shown in Fig. 7.

With the aid of the TSO in Fig. 7, it can easily be understood that the two tracks of the orbit are formed at
different times, i.e. before and after the shaft passes through its first-order critical speed. The TSO gives more
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Table 1

Computing efficiency of the EMD approach.

Computer run no. Computing time for getting the purified shaft orbits shown in Fig. 5 (s)

EMD-based approach Wavelet packet decomposition-based approach

1 1.5313 2.1560

2 1.5156 2.0469

3 1.5313 2.0781

4 1.4844 2.1094

5 1.5625 2.0781

6 1.5313 2.0781

7 1.4531 2.0781

8 1.5156 2.0625

9 1.4844 2.0938

10 1.5313 2.0469

Mean (s) 1.5141 2.0828
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Fig. 6. A two-dimensional shaft orbit obtained during start-up period.
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machine condition monitoring and fault diagnosis information than conventional two-dimensional shaft
orbits.

However, the true TSO cannot be obtained using the FT.
The WT is a potential method, but it is not efficient due to the complex calculations involved in WTs and

inverse WTs. In contrast, the EMD-based approach provides an ideal way to construct the TSO, whatever in
computational accuracy or algorithmic efficiency.

3. Mathematical criteria for assessing the IMFs and the TSO

Nine mathematical criteria, Rl, Ro, Ru, F, s1–s5, are now proposed for describing the vibration information
exhibited by the IMFs and the TSO, so that the running condition of a machine may be quantitatively
assessed.

Different faults show different energy distributions in the frequency domain and the EMD decomposes the
signal into a series of IMFs in descending order of frequency. The following three criteria are proposed to
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detect changes of shaft vibration energy distribution. Assume ˜̃Ai_x and ˜̃Ai_y (i ¼ 1,2,y,N) are the magnitudes
of the dominant frequency components in ˜̃ximf_iðtÞ and ˜̃yimf_iðtÞ, which are the ‘purified’ principal IMFs,
respectively, in the x- and y-directions.

˜̃Ak_x and ˜̃Ak_y (k ¼ 1,2,y,0pKpN) are the magnitudes of those ‘purified’ principal IMFs whose dominant

frequencies f imf_k are smaller than the shaft rotational frequency fr, i.e. f imf_kof r.
˜̃Ao_x and ˜̃Ao_y are the

magnitudes of the ‘purified’ principal IMFs whose dominant frequencies are equal to fr. Then, the energy
distribution of the shaft vibration may be described by the following three criteria Rl, Ro, Ru:

Rl ¼

PK
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
˜̃Ak_x þ

˜̃Ak_y

q
PN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
˜̃Ai_x þ

˜̃Ai_y

q (14)

Ro ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
˜̃Ao_x þ

˜̃Ao_y

q
PN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
˜̃Ai_x þ

˜̃Ai_y

q (15)

Ru ¼ 1� Rl � Ro (16)

Among which, Rl indicates the proportion of the energy contributed by low-frequency vibrations, Ro the
proportion contributed by shaft rotational frequency component, and criterion Ru is the proportion
contributed by high-frequency vibrations.

In order to measure the singularity of the TSO, the curvature of the orbit is calculated by using the equation

zðtÞ ¼
_X pðtÞ €Y pðtÞ � €X pðtÞ _Y pðtÞ

f½ _X pðtÞ�
2 þ ½ _Y pðtÞ�

2g3=2
(17)

where Xp(t) and Yp(t) represent the ‘purified’ vibration signals, respectively, in the x- and y-directions. As in
Ref. [1] the maximum value of z(t) is employed to evaluate the smoothness of the shaft orbit, i.e.

F ¼ maxðjzðtÞjÞ (18)
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Experimental results reveal that F approximates to 1 when the shaft runs normally. Its value diverges from 1 in
the presence of a mechanical fault. Moreover, the bigger the divergence, the more serious the indicated fault.

For various dynamic reasons, the shaft orbit often shows different geometric shapes at different times.
Transient changes of the TSO often include vital information for machine diagnosis. For example, sudden
changes of the orbit shape and position can be observed when rotor-to-stator rubbing occurs; the swaying
motion of the shaft indicates the presence of a part-loosening fault; a fluid excitation fault usually leads
to irregular changes of shaft vibration intensity and orientation, but without changing the central position of
the shaft.

In order to extract these characteristics from the TSO, the following five criteria, s1–s5, are proposed. For
facilitating the understanding, a schematic diagram is plotted in Fig. 8, in which a single cycle of transient
shaft vibration orbit is shown and

rjði � jM þMÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½X pðiÞ�

2 þ ½Y pðiÞ�
2

q
(19)

where i ¼ {(j�1)M+1,(j�1)M+2,y,jM}, M ¼ fs/fr which indicates the number of data collected in a single
shaft rotating cycle, j ¼ f1; 2; . . . ;Dg, D represents the number of shaft rotating cycles contained in the
whole signal.

In Fig. 8,

a ¼ maxðrjði � jM þMÞÞ (20)

b ¼ minðrjði � jM þMÞÞ (21)

Let

‘ðjÞ ¼
a

b
(22)

Then, have

s1 ¼
1

D

XD

j¼1

½‘ðjÞ � ‘̄ðjÞ�2 (23)

where ‘̄ is the mean value of ‘.
The criterion s1 indicates the stability of shaft vibration. The smaller the value of s1, the more stable the

shaft vibration.
In order to measure the symmetric property of the shaft vibration in different circumferential directions, rj is

employed directly to construct another criterion s2, i.e.

s2 ¼
1

D

XD

j¼1

_j (24)
b
o x

y

a

rj  (.)

�

Fig. 8. Single cycle of transient shaft vibration orbit.
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where

_j ¼
1

M

XM
n¼1

½WjðnÞ � W̄jðnÞ�
2 (25)

and

WjðnÞ ¼
rjðnÞ

maxðrjÞ
(26)

It is well known that the inclination angle of the major axis of the orbit reflects the relative magnitudes of
the mechanical forces on the shaft. A change in this angle often indicates a change in machine running
conditions, for example, the presence of rotor-to-stator rubbing will lead to a frequent change of this angle.
However, this does not happen in the presence of a fluid pipe excitation fault, in which case the inclination
angle shows an invariant value. Anyway, the variation of this angle may be described by the criterion s3:

s3 ¼
1

D

XD

j¼1

½bðjÞ � b̄ðjÞ�2 (27)

where b(j) ¼ a tan(Yp(m)/Xp(m)), Xp(m), and Yp(m) are the amplitudes of the ‘purified’ signals when rj(i)
reaches its maximum value in the j-th shaft rotating cycle.

Practice shows that both very large and very small values of s3 indicate the presence of machine faults.
The residual of the EMD reveals the trend of the signal being investigated and in the present application

represents variations of the central position of the shaft, which may be expressed as

PcenterðtÞ ¼ rðtÞ y
*
ðtÞ (28)
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where

rðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½xresidueðtÞ�

2 þ ½yresidueðtÞ�
2

q
(29)

yðtÞ ¼ a tan
yresidueðtÞ

xresidueðtÞ

� �
(30)

xresidue(t) and yresidue(t) are the residues in the EMDs of X(t) and Y(t).
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Fig. 10. The EMDs of the part-loosening faulty signals: (a) signal in x-direction, (b) signal in y-direction, and (c) energy-distribution
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Fig. 10. (Continued)
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Obviously, changes of r(t) and y(t) both indicate a change in the central position of the shaft. In order to
measure movement of the shaft’s central position with respect to the bearing housing, the following two
criteria, s4 and s5 are proposed with the aid of r(t) and y(t), i.e.:

s4 ¼
1

T

XT

t¼0

½rðtÞ � r̄ðtÞ�2 (31)
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s5 ¼
1

T

XT

t¼0

½yðtÞ � ȳðtÞ�2 (32)

where T is the time duration of the signals being investigated.
4. Verification of the proposed technique

The effectiveness of the proposed technique in condition monitoring and fault diagnosis of rotating
machines is validated in the following.
4.1. The EMD-based TSO in fault diagnosis

Firstly, a couple of part-loosening fault signals from centrifugal compressors are considered. Their time
waveforms, FFT spectra, and the shaft orbit constructed by them are shown in Fig. 9, in which the purified
shaft orbit obtained by the approach of the HRS is also given for comparison.

The signals in both x- and y-directions are analyzed by using the EMD and the resultant IMFs are shown in
Fig. 10.

From Fig. 10a and b, it is observed that the EMD does provide a perfect decomposition of the signal in both
time and frequency domains. The energy leakage phenomenon existing in the WTs (observed in Fig. 5b and c)
has been significantly reduced in the IMFs. From Fig. 10c, it can be seen that the first five IMFs are
the principal IMFs. Then, by processing the principal IMFs using the adaptive filter depicted in Section 2
and constructing the ‘purified’ signals using Eq. (13), the x- and y-‘purified’ signals and the TSO constructed
from them are shown in Fig. 11, in which the original vibration signals and their TSO are plotted for
comparison.

The comparison of Figs. 11a and 9 shows that the EMD-based ‘purified’ TSO provides a more realistic and
natural description of the shaft vibration. In other words, the transient swaying of the shaft central position
due to part loosening has been vividly exhibited by the TSO. However, this phenomenon cannot be observed
so clearly from the purified orbit by the HRS. Undoubtedly, a reliable assessment of the machine condition
may be achieved more easily with the aid of the TSO derived by the EMD.
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In the meantime, the comparison of Fig. 11a and b suggest that the TSO derived using the EMD
approach shows a clearer indication of machine running condition than the TSO constructed using
the original shaft vibration signals. This is because vibrations unrelated to the fault have been removed from
the former.
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One more proof for validating the proposed approach is the diagnosis of a fluid excitation fault occurring in
a centrifugal compressor. The time waveforms and FFT spectra of the original signals and the shaft orbits
constructed from them are shown in Fig. 12.

Both the original and purified shaft orbit in Fig. 12 show unclear information and nothing can be concluded
from them. The EMD approach is then applied to the signals and the derived IMFs and their energy
distributions are shown in Fig. 13.

By observing the rxy shown in Fig. 13c, it is found that the second, third, forth, and the fifth IMFs are the
principal IMFs. Likewise, the adaptive filtering technique is applied to them to obtain their ‘purified’ forms.
The ‘purified’ signals and the TSO constructed from them are shown in Fig. 14 together with the original shaft
vibration signals and their corresponding TSO for comparison.

From Fig. 14a, it is observed that not only the orbit vibration intensity changes irregularly, but also the major-axis
inclination, due to the random excitation from the fluid excitation. However, these phenomena cannot be observed
clearly from Fig. 14b. It is also found that the central position of the shaft does not change in the presence of this
fault. This is distinctly different from the TSO in the part-loosening fault, Fig. 11a, and the TSO in the rotor-to-stator
rubbing fault, Fig. 15e. While, the TSO shown in Fig. 15e is different from that in Fig. 11a too. In other words, the
sharp changes of the orbit observed in Fig. 15b are not present in the TSO when a part-loosening fault occurs, though
the fluctuation of shaft central position occurs in both cases. Therefore machine faults with similar vibrations but
different characteristics can easily be distinguished from each other with the aid of a TSO derived from the EMD.

4.2. The mathematical criteria

The mathematical criteria proposed in Section 3 are now calculated to verify their effectiveness in describing
transient shaft vibrations under different machine running conditions. In these calculations, total seven
different machine running conditions are considered. They are:
�

Fig
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figu
rotor-to-stator rubbing,

�
 fluid excitation,

�
 oil whirl,

�
 incipient transverse cracking, and

�
 normal running condition of the shaft.
Each condition is investigated by calculating the criteria from 12 pairs of sample signals collected from real
centrifugal compressors, with similar rotor-bearing systems, operating in the Shijiazhuang Petroleum Plant,
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Fig. 13. (Continued)
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Xingjiang Petroleum-Chemical Plant, and ZhenHai Oil Refinery in China. The mean values of all criteria
obtained in this investigation are listed in Table 2. From Table 2, it is found that
�
 Rl, Ro, and Ru discriminate the machine running conditions roughly into four categories, as listed in
Table 3.

�
 Criterion F correctly describes the smoothness of the shaft orbit. Its value is approximately 1 when the shaft

runs normally. The significant divergence of F from 1 indicates the presence of a machine fault.
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�
 Criterion s1 is a sensitive indicator of the stability of the shaft vibration in the bearing housing. In the
presence of a part-loosening or rotor-to-stator rubbing fault, the shaft vibrates significantly in the bearing
housing, which is characterized by a large s1.

�
 Criterion s2 measures the symmetric property of the shaft vibration in indifferent circumferential directions.

Its value increases with the presence of a fault. Most interestingly, s2 is so sensitive to the shaft health that it
gives a strong response to the presence of an incipient transverse crack.

�
 Abnormal changes of machine condition affect the congruity and the harmonization of shaft vibration.

Criterion s3 reflects this phenomenon. From Table 2, it can be seen that both an increase and decrease of s3
indicate a modification to the machine condition.

�
 Criteria s4 and s5 measure the variation of shaft central position with respect to the bearing housing. Large

values of s4 and s5 indicate big fluctuations of the shaft axis. Table 2 reveals that part-loosening and rotor-
to-stator rubbing faults are typically characterized by large s4 and s5.

From above observations, it can be concluded that the proposed mathematical criteria provide an effective
assessment of machine running condition. However, it is worthy to note that all these mathematical criteria
have not considered fault severity. So, in practice, better condition monitoring may be achieved if they are
used in combination with trend analysis. With regard to the trend analysis for machine condition monitoring,
the interested readers may refer to Refs. [28,29].

5. Conclusions

An adaptive technique is developed in the paper using the EMD approach to interpret shaft vibration
signals collected from large rotating machines. Both the theoretical definition of the proposed technique and a
number of mathematical criteria proposed for quantitative assessment of machine condition are described in
detail, followed by verifications on practical data. From the work, the following conclusions have been
reached:
�
 In comparison with the traditional FT approach, the EMD technique gives a more realistic and vivid image
of transient shaft vibration attribute to the EMD does not involve any artificial transform. In particular,
the TSO constructed by using the ‘purified’ principal IMFs clarifies potential misinterpretations of machine
condition and leads to a more reliable machine fault diagnosis.
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�
 In comparison with the WT approach, the EMD technique has a higher algorithmic efficiency. Therefore, it
allows observation of longer term transient shaft vibrations. This is helpful for improving the reliability of
machine condition assessment and diagnosis. In addition, it has been shown that the proposed technique
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exhibits machine fault symptoms more satisfactorily than the WT because EMD minimizes the energy
leakage problems in the vicinity of frequencies of interest.

�
 The mathematical criteria derived from the IMFs and the TSO possess exact physical significances. With

their use the running condition of the shaft can be correctly assessed and the type of the fault can be
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Table 2

Mean values of the criteria proposed in this investigation.

Running conditions of the shaft Criteria

Rl Ro Ru F s1 s2 s3 s4 s5

Coupling misalignment 0.0595 0.3234 0.6171 1.9774 11.9921 0.0656 3.3033 1.2192 0.0000

Part loosening 0.7016 0.0000 0.2984 8.4567 200.0732 0.0559 0.1738 100.9709 1.3256

Rotor-to-stator rubbing 0.0000 0.5519 0.4481 6.7089 132.5925 0.0638 2.7678 5.7744 0.0001

Fluid excitation 0.6268 0.3732 0.0000 3.9009 41.4020 0.0613 4.6189 2.2759 0.0047

Oil whirl 0.4729 0.5271 0.0000 1.8307 5.6073 0.0995 3.9507 0.0369 0.0433

Incipient transverse crack 0.0000 1.0000 0.0000 0.3718 32.4476 0.0147 3.3266 0.9048 0.0000

Normal rotor 0.0000 1.0000 0.0000 0.9990 0.0000 0.0000 2.6558 0.0000 0.0000

Table 3

Machine running conditions classified by Rl, Ro and Ru.

Category Features Possible conditions

1 Ro � 1; Rl � Ru � 0 Normal condition, rotor unbalance, the rotor with incipient transverse crack, and bent shaft

2 Ru � 0 but with large Rl

and Ro

The faults characterized by low frequency vibration, such as fluid excitation, oil whirl, surge and

the rotor with slight part loosening fault

3 Ro � 0 but with large Rl

and smaller Ru

The faults characterized by both high and low frequency vibrations. It is often observed when

serious part loosening fault happens

4 Rl � 0 but with large Ru

and Ro

The faults characterized by high frequency vibration. For example, rotor-to-stator rubbing,

coupling misalignment, the rotor with a big size of transverse crack
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distinguished. It is anticipated that better condition monitoring can be achieved if these criteria are used in
combination with trend analysis.

In summary, the proposed technique provides an effective tool for interpreting the nonlinear/non-stationary
shaft vibrations in large rotating machines.
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